

# Microbial quality of Khoa and Khoa based milk sweets from different sources

<sup>1\*</sup>Karthikeyan, N. and <sup>2</sup>Pandiyan, C.

<sup>1</sup>Department of Dairy Science, Veterinary College and Research Institute, Namakkal – 637002, Tamilnadu state, India and <sup>2</sup>Veterinary College and Research Institute, Orathanadu, Thanjavur-614625, Tamilnadu state, India

#### Article history

## <u>Abstract</u>

Received: 29 August 2012 Received in revised form: 14 November 2012 Accepted:24 November 2012

#### **Keywords**

Khoa milk sweets bacterial count yeast and mould count A total 66 samples of Indian indigenous milk sweets such as khoa (27), burfi (10), gulabjamun (10), kalakand (9) and peda (10) were collected from local vendors, private manufacturers and organized dairies for enumeration of total viable bacterial count, coliform count, psychotropic count, aerobic spore farmers, yeast and mould count, isolation and identification of mould species were also carried out. The total viable bacterial count, yeast and mould count of local vendor's samples were higher than private manufacturers and organized dairies. The occurrence of *Aspergillus* sp. isolated from Khoa samples was found to be the highest (63.08%) followed by *Penicillium* sp.(17.38%), *Rhizopus* sp.(10.86%), *Fusarium* sp (4.34%) and *Mucor* sp. (4.34%). However the occurrence of *Aspergillus* sp. isolated from Khoa based milk sweet samples was also found to be highest (70.90%) followed by *Penicillium* sp.(15.11%), *Rhizopus* sp. (9.30%), *Mucor* sp.(3.48%) and *Fusarium* sp. (1.16%) respectively. The higher microbial load of these local vendor's products may be due to contamination at various sections of production and until marketing of the finished products. It can be concluded that regular quality assessment programme together with good manufacturing practices, would pave the way to maintain safety and quality of various indigenous milk products.

© All Rights Reserved

## Introduction

Milk and milk products constitute important nutritional components serve as the source of first class proteins especially for children and vegetarians. It supplies most essential elements like calcium and phosphorus along with numerous other essential major and minor substances. Due to its complex biochemical composition and high water content, milk and milk products act as an excellent culture medium for the growth and multiplication of varieties of microorganisms particularly stored at ambient temperature.

Among the Indian indigenous dairy products, khoa and khoa based milk sweets are provide a good means of conserving and preserving surplus milk solids. Khoa is of greater importance to the confectionaries. India's annual milk production is over 106 million ton; nearly 50 per cent of total milk produced in India is utilized for the manufacture of variety of traditional milk products (Khan, 2006). Approximately 50 percent of milk produced is consumed as fresh or boiled, one sixth as yoghurt or curd and remaining is utilized for manufacturing of indigenous varieties of milk products such as butter, ice cream, khoa, paneer, rabri, kheer, burfi

\*Corresponding author. Email: karthitamil\_2007@rediffmail.com Tel: 0091 9488884255 and gulabjamun. The manufacture of these products is based on traditional method without any regard to the quality of raw material used and/ or the hygienic quality of the products. Under such conditions many microorganisms can find access to the milk products (Soomro *et al.*, 2002). The unhygienic conditions at the production units lead to contamination of products with different types of microorganisms leading to a low shelf life of the finished products, most of the products are sold in the market without proper packaging and unduly exposing them to atmospheric contamination (Khan, 2006).

Even though the khoa and khoa based milk sweets are produced under strict hygienic conditions in organized sector, they are prone for microbial contamination. It may gain entry into food at any stage of processing right from the farm to till the food is reached to the final consumer like at the time of packing, transport and storage etc, so it becomes imperative not only to take all kinds of preventive measures and also to evaluate at every stage (Agarwal and Rachappa, 2006) which will subsequently influence the microbiological quality. Spoilage of dairy products by moulds is of frequent occurrence in India due to the prevailing tropical climate and high humidity. Since the mould spores are transmitted through air, they are ubiquitous in nature.

Considering the above facts, the detection and enumeration of microorganism in khoa and khoa based milk sweets is an integral part of any good quality assurance program and reflect the effectiveness of sanitation practices, processing and distribution schemes of local, private manufactures and organized dairies.

## **Materials and Methods**

A total 66 samples of Indian indigenous milk sweets such as khoa (27), burfi (10), gulabjamun (10), kalakand (9) and peda (10) from the following sources viz., local vendors, private manufacturers, organized dairies were collected aseptically and subjected to further analysis of total viable bacterial count, coliform count, psychrotrophic count, aerobic spore forming bacterial count, yeast and mould count and isolation, identification of mould species. Total viable bacterial count, coliform count and psychrotrophic count were done as per standard methods for examination of Dairy products (Bureau of Indian Standards 1479, 1977). For aerobic spore forming bacterial count, the vegetative cells were destroyed by heat treatment at 80°C for 10 min then the sample were plated in standard plate count agar in duplicate using lower dilutions according to the standard procedure (WHO, 1962).

As per the Bureau of Indian Standards 1479 (1977), the enumeration of yeast and mould count was made. Mould colonies from the representative agar plates were picked, isolated and sub cultured on potato dextrose agar slants at a pH of 3.5. These cultures were maintained as slant cultures in the refrigerator and renewed at every 14 days of intervals and different species of *Aspergilli*, *Penicillium*, *Rhizopus*, *Fusarium* and *Mucor* were identified (Smith, 1981). The growth rate and the morphological colony characters such as colony colour, colour changes, colour on reverse side of the colony and texture of the colony on agar surface were studied after 10 days of incubation at 25°C on Czapek Dox agar.

Colony characters of the isolated moulds were examined under the stereomicroscope and the observations were recorded. Mounted preparations of the moulds on slides stained by using Lactophenol cotton blue were examined using stage micrometer for finer details and reproductive structures under the low and high power of the microscope. A total number of colonies of each category of the samples were enumerated and the collected data's were subjected to statistical analysis as per Snedecor and Cochran (1980). The rate of isolates of each mould in the khoa samples and khoa based milk sweets were calculated as a percentage of the total number of the isolates.

## Results

The total viable count of khoa samples obtained from Local vendors, Private manufacturers and Organized dairies ranged (Table 1) from  $16x10^4$ to  $2.71x10^5$ ,  $1.7x10^3$  to  $2.9x10^4$  and  $7x10^2$  to  $4x10^3$ respectively. Similarly the coliform count of khoa samples obtained from the above three sources ranged from  $3x10^2$  to  $2.9x10^3$ ,  $1x10^2$  to  $6.0x10^2$  and  $1x10^{-3}x10^2$  respectively.

The aerobic spore farming bacterial count of khoa samples obtained from Local vendors, Private manufacturers and Organized dairies ranged from  $3x10^3$  to  $1.7x10^4$ ,  $2x10^2$  to  $5x10^2$  and  $1x10^1$  to  $2x10^2$  respectively. And also psychotropic count of khoa samples collected from the three sources ranged from  $10x10^2$  to  $3.1x10^3$ ,  $1x10^2$  to  $1.7x10^3$  and  $1x10^1$  to  $2.5x10^2$  respectively. The yeast and mould count of khoa samples three sources were ranged from  $1.1x10^3$  to  $1.9x10^3$ ,  $1x10^2$  to  $9x10^2$  and  $2x10^1$  to  $2x10^2$  respectively.

The total viable count of khoa based milk sweets obtained from local vendors, private manufacturers and organized dairies ranged (Table 2) from  $1.2 \times 10^5$  to  $8 \times 10^5$ ,  $1.9 \times 10^3$  to  $2.3 \times 10^5$  and  $8 \times 10^2$  to  $3.1 \times 10^4$  respectively. Similarly the coliform count was ranged from  $4 \times 10^2$  to  $3.1 \times 10^3$ ,  $2 \times 10^2$  to  $1.1 \times 10^3$  and  $2 \times 10$  to  $1 \times 10^2$  respectively.

The percentage distribution of mould species isolated from khoa samples (Table 3) were *Aspergillus niger, Aspergillus flavus, Aspergillus versicolor, Penicillium citrinum, Rhizopus stolonifer, Penicillium frequentans, Fusarium* sp. and *Mucor* sp. were 26.08, 21.78, 15.21, 13.04, 10.86, 4.34, 4.34 and 4.34 respectively.

The aerobic spore farming bacterial count of khoa based milk sweets obtained from the above three sources were ranged from  $3x10^2$  to  $1.7x10^4$ ,  $3x10^2$  to  $1.1x10^3$  and  $4x10^1$  to  $5x10^2$  respectively. Similarly the psychrotrophic count of was ranged from  $1.82x10^3$ to  $5.1x10^4$ ,  $1.9x10^2$  to  $3.2x10^3$  and  $3x10^1$  to  $1.9x10^3$ respectively. The yeast and mould count of khoa based milk sweets obtained from the above mentioned three sources were ranged from  $32x10^2$  to  $8x10^3$ ,  $2x10^2$  to  $1.7x10^3$  and  $5.4x10^1$  to  $7x10^2$  respectively.

The percentage distribution of mould species isolated from khoa based milk sweets (Table 4) were Aspergillus niger, Aspergillus flavus, Aspergillus versicolor, Aspergillus fumigatus, Aspergillus parasiticus, Penicillium citrinum, Penicillium *frequentans*, *Rhizopus stolonifer*, *Mucor* sp. and *Fusarium* sp. were 38.20, 22.09, 6.97, 2.32, 2.32, 10.46, 4.65, 9.30, 3.48 and 1.16 respectively.

The results of mean values of the samples collected from local vendors, private manufacturers and organized dairies were summarized in the respective tables. The mean total viable, coliform, aerobic spore formers, yeast and mould count of khoa samples and khoa based milk sweets from local vendors were highly significant (P < 0.01) when compared to private manufacturers and organized dairies. The mean psychrotrophic count of khoa samples and khoa based milk sweets from local vendors and private manufacturers were highly significant (P < 0.01) when compared to samples collected from organized dairies.

# Discussion

The total viable and coliform count of Khoa samples (Table 1) obtained from local vendors were high as compare to private manufacturers and organised dairies. The total bacterial count was higher in Khoa samples collected from B grade shops than the A grade shops (Bandekar et al., 1998). Similarly, Kumar and Sinha (1989) also recorded higher coliform count of khoa samples obtained from local vendors was high as compare with organized sectors. And also the total viable count and coliform count of Khoa based milk sweets (Table 2) collected from local vendors were high as compared to the private manufacturers and organized dairies: Garge and Usha, (1984), recorded a range of  $1.1 \times 10^3$  to  $5.6 \times 10^5$  cfu/ gm. The coliform count of peda, burfi and kalakand were  $460, 1.61 \times 10^4$  and  $4 \times 10$  cfu/gm respectively (Dwarakanath and Srikanta, 1977). The unhygienic condition of preparation of these Khoa and Khoa based milk products and water used for washing of utensils has enhanced the bacterial contamination of these products.

The aerobic spore formers count of Khoa samples (Table 1) collected from local vendors were high as compare to private manufacturers and organised dairies (Kamat *et al.*, 1989), recorded a range of  $2 \times 10^2 - 5 \times 10^4$  cfu /gm of sample. The aerobic spore formers count of Khoa based milk sweets (Table 2) were in close agreement with the findings of Magadam *et al.* (1988) who recorded a range of  $1 \times 10^2$  to  $5.8 \times 10^3$  cfu/gm. The higher incidence of spore formers may be due to marketing in dusty, dirty and open environment.

The psychrotrophic counts of Khoa samples (Table 1) and khoa based milk sweets (Table 2) from all three sources were higher than the psychrotrophic

count recorded by Sharma and Joshi (1991). The higher values in this study may be due to individual's unhygienic practices, through packaging material and environmental factors.

The yeast and mould count of Khoa samples obtained from local vendors were high as compare with private manufacturers and organized dairies. The total yeast and mould count of sweet khoa at 3, 4, 5 and 6 days of storage were  $3.0 \times 10^1$ ,  $1.0 \times 10^2$ ,  $1.5 \times 10^2$  and  $2.7 \times 10^2$  cfu/gm respectively (Vijayalakshmi and Tamilarasi, 2001). This is mainly due to unhygienic conditions prevailing during manufacture and subsequent storage.

The yeast and mould count of Khoa based milk sweets (Table 2) obtained from local vendors were high as compare with private manufacturers and organized dairies and are in agreement with the findings of Ghodeker *et al.* (1980). Who reported that the yeast and mould count of burfi and pera were 20 to 3,700/gm and 30 to 4,000/gm respectively. The sample contamination can be attributed to the practice of preparing large bulk of product in advance prior to the requirement and storage of the product at room temperature for long duration.

The total viable, coliform, yeast and mould count of khoa samples collected from organised dairies were found to be within the prescribed limit, whereas in the samples collected from private manufacturers and local vendors the total viable, coliform, yeast and mould count exceeded the prescribed limits of Bureau of Indian Standards 1479 (1977).

Khoa based milk sweets collected from the organized dairies, private manufacturers the total viable count was found within the prescribed limit, where as local vendor's samples exceeds the limits. But the samples collected from organized dairies, private manufacturers and local vendors the yeast and mould count was found to exceed the prescribed limits of Bureau of Indian Standards 1479 (1977). This might be due to usage of stored khoa for long period for making sweets (Yadav et al., 1993). In general, the total viable, coliform, aerobic spore formers, psychrotrophic and yeast and mould count in local vendors samples were higher than that of private manufacturers and organized dairies and also highly significant (P < 0.01). The higher microbial load may be due to contamination during postpreparation handling, transportation and storage of the finished product. The method of production, handling, transportation and marketing of these local vendors products are entirely depend upon traditional system. Such system could pose favorable environment for bacterial contamination. The unclean hands of workers, poor quality of milk, unhygienic

Table 1. Microbiological quality of Khoa obtained from different sources

| Sl. No. | Counts                      |                 | Local Vendors*                             |                                          |                | Private manufacturers <sup>*</sup>         |                                          |                 | Organised dairies <sup>*</sup>           |                                         | <b>F</b> Value |
|---------|-----------------------------|-----------------|--------------------------------------------|------------------------------------------|----------------|--------------------------------------------|------------------------------------------|-----------------|------------------------------------------|-----------------------------------------|----------------|
|         |                             | % of occurrence | Range<br>cfu/gm                            | Mean<br>cfu/gm                           | %of occurrence | Range<br>cfu/gm                            | Mean<br>cfu/gm                           | % of occurrence | Range<br>cfu/gm                          | Mean<br>cfu/gm                          |                |
| 1.      | Total viable count          | 81.80           | 16x10 <sup>4</sup> to2.71x10 <sup>5</sup>  | 218x10 <sup>3</sup> ±23.62 <sup>a</sup>  | 66.66          | 1.7x10 <sup>3</sup> to 2.9x10 <sup>4</sup> | 21.83x10 <sup>3</sup> ±2.04 <sup>b</sup> | 66.66           | 7x10 <sup>2</sup> to 4x10 <sup>3</sup>   | 4.8x10 <sup>3</sup> ±2.06 <sup>c</sup>  | 185.62**       |
| 2.      | Coliform count              | 63.63           | 3x10 <sup>2</sup> to 2.9x10 <sup>3</sup>   | 17x10 <sup>2</sup> ±4,2 <sup>a</sup>     | 55.55          | 1x10 <sup>2</sup> to 6.0x10 <sup>2</sup>   | 3.33x10 <sup>2</sup> ±0.80 <sup>b</sup>  | 54.54           | 1x10 to 3x10 <sup>2</sup>                | 0.61x10 <sup>2</sup> ±0.31°             | 36.74**        |
| 3.      | Aerobic spore formers count | 72.73           | 3x10 <sup>3</sup> to 1.7x10 <sup>4</sup>   | 6.6x10 <sup>3</sup> ±2.11 <sup>a</sup>   | 54.54          | 2x10 <sup>2</sup> to 5x10 <sup>2</sup>     | 0.35x10 <sup>3</sup> ±0.05 <sup>b</sup>  | 54.54           | 1x10 <sup>1</sup> to 2x10 <sup>2</sup>   | 0.07x10 <sup>3</sup> ±0.02 <sup>c</sup> | 56.10**        |
| 4.      | Psychrotrophic count        | 72.72           | 10x10 <sup>2</sup> to 3.1x10 <sup>3</sup>  | 21x10 <sup>2</sup> ±3.26 <sup>a</sup>    | 55.55          | 1x10 <sup>2</sup> to 1.7x10 <sup>3</sup>   | 8.91x10 <sup>2</sup> ±3.05 <sup>a</sup>  | 55.55           | 1x10 <sup>1</sup> to 2.5x10 <sup>2</sup> | 0.8x10 <sup>2</sup> ±0.38 <sup>b</sup>  | 22.10**        |
| 5.      | Yeast & mould count         | 81.81           | 1.1x10 <sup>3</sup> to 1.9x10 <sup>3</sup> | 14.83x10 <sup>2</sup> ±1.22 <sup>a</sup> | 55.55          | 1x10 <sup>2</sup> to 9x10 <sup>2</sup>     | 3.75x10 <sup>2</sup> ±1.2 <sup>b</sup>   | 54.54           | 2x10 <sup>1</sup> to 2x10 <sup>2</sup>   | 0.76x10 <sup>2</sup> ±0.29°             | 27.41**        |

Table 2. Microbiological quality of Khoa based milk sweets obtained from different sources

| Sl.No. | Counts                      | Local Vendors*  |                                             |                                           | Private manufacturers* |                                            |                                          | Organized dairies* |                                          |                                         | FValue  |
|--------|-----------------------------|-----------------|---------------------------------------------|-------------------------------------------|------------------------|--------------------------------------------|------------------------------------------|--------------------|------------------------------------------|-----------------------------------------|---------|
|        |                             | % of occurrence | Range<br>cfu/gm                             | Mean<br>cfu/gm                            | % of occurrence        | Range<br>cfu/gm                            | Mean<br>cfu/gm                           | % of occurrence    | Range<br>cfu/gm                          | Mean<br>cfu/gm                          |         |
| 1.     | Total viable count          | 100             | 1.2x10 <sup>5</sup> to 8x10 <sup>5</sup>    | 344x10 <sup>3</sup> ±112.8 <sup>a</sup>   | 100                    | 1.9x10 <sup>3</sup> to 2.3x10 <sup>5</sup> | 14.38x10 <sup>3</sup> ±3.69 <sup>b</sup> | 100                | 8x10 <sup>2</sup> to 3.1x10 <sup>4</sup> | 6.96x10 <sup>3</sup> ±4.87 <sup>b</sup> | 30.32** |
| 2.     | Coliform count              | 100             | 4x10 <sup>2</sup> to 3.1x10 <sup>3</sup>    | 19.2x10 <sup>2</sup> ±3.85 <sup>a</sup>   | 100                    | 2x10 <sup>2</sup> to 1.1x10 <sup>3</sup>   | $4.55 x 10^2 \pm 1.41^b$                 | 54.54              | 2x10 to 1x10 <sup>2</sup>                | 1.18x10 <sup>2</sup> ±0.58°             | 21.38** |
| 3.     | Aerobic spore formers count | 76.92           | 3x10 <sup>2</sup> to 1.7x10 <sup>4</sup>    | 83.83x10 <sup>2</sup> ±27.08 <sup>a</sup> | 63.63                  | 3x10 <sup>2</sup> to 1.1x10 <sup>3</sup>   | 6x10 <sup>2</sup> ±1.37 <sup>b</sup>     | 54.54              | 4x10 <sup>1</sup> to 5x10 <sup>2</sup>   | 1.91x10 <sup>2</sup> ±0.74 <sup>b</sup> | 11.58** |
| 4.     | Psychrotrophic count        | 69.23           | 1.82x10 <sup>3</sup> to 5.1x10 <sup>4</sup> | 18.55x10 <sup>3</sup> ±7.71 <sup>a</sup>  | 54.54                  | 1.9x10 <sup>2</sup> to 3.2x10 <sup>3</sup> | 1.53x10 <sup>3</sup> ±0.42 <sup>b</sup>  | 54.54              | 3x10 <sup>1</sup> to 1.9x10 <sup>3</sup> | $0.88 x 10^3 \pm 0.27^b$                | 12.73** |
| 5.     | Yeast & mould count         | 84.61           | 32x10 <sup>2</sup> to 8x10 <sup>3</sup>     | 54x10 <sup>2</sup> ±6.62 <sup>a</sup>     | 72.72                  | 2.0x10 <sup>2</sup> to 1.7x10 <sup>3</sup> | $7x10^2\pm2.38^b$                        | 63.63              | 5.4x10 <sup>1</sup> to 7x10 <sup>2</sup> | $3.33 x 10^2 \pm 1.14^b$                | 25.41** |

\*\* Means bearing different superscripts between treatments differ significantly (P < 0.01)

Table 3. Distribution pattern of moulds in khoa from different sources

| Sl. No. | Mould Isolates          | Total number of Isolates |          | Sources        | Percentage | Total Percentage |                       |
|---------|-------------------------|--------------------------|----------|----------------|------------|------------------|-----------------------|
|         |                         |                          | Local    | Private        | Organized  | -                |                       |
|         |                         |                          | Vendors* | Manufacturers* | Dairies*   |                  |                       |
| 1.      | Aspergillus niger       | 13                       | 7        | 3              | 3          | 26.08            | Aspergillus sp. 63.07 |
| 2.      | Aspergillus flavus      | 09                       | 6        | 2              | 1          | 21.78            |                       |
| 3.      | Aspergillus versicolor  | 7                        | 6        | 1              | -          | 15.21            |                       |
| 4.      | Penicillium citrinum    | 6                        | 1        | 3              | 2          | 13.04            | Penicillium sp. 17.38 |
| 5.      | Penicillium frequentans | 2                        | 1        | 1              | -          | 4.34             |                       |
| 6.      | Rhizopus stolonifer     | 5                        | -        | 3              | 2          | 10.86            | Rhizopus sp. 10.86    |
| 7.      | Fusariumsp              | 2                        | -        | -              | 2          | 4.34             | Fusarium sp. 4.34     |
| 8.      | Mucor sp                | 2                        | -        | 1              | 1          | 4.34             | Mucor sp. 4.34        |
|         | Total                   | 46                       | 22       | 13             | 11         |                  |                       |

\*\* Means bearing different superscripts between treatments differ significantly (P < 0.01)

conditions of manufacturing unit, inferior quality of material used and water supplied for washing the utensils could be the source of accelerating the bacterial contamination of milk products and post manufacturing contamination. Our findings correlate with the reports of Kumar and Sinha (1989), Grewal and Tiwari (1990) and Kulshrestha (1990).

As shown in Table 3, the percentage distribution of mould species isolated from khoa samples were *Aspergillus niger, Aspergillus flavus, Aspergillus versicolor, Penicillium citrinum, Rhizopus stolonifer, Penicillium frequentans, Fusarium* sp and *Mucor* sp were 26.08, 21.78, 15.21, 13.04, 10.86, 4.34, 4.34 and 4.34 respectively. These findings were in close agreement with the findings of Ghodeker *et al.*(1980). It was seen that there was a higher incidence of *Aspergillus* sp 63.07% followed by *Penicillium* sp 17.38%, *Rhizopus* sp 10.86%, *Fusarium* sp 4.34% and Mucor sp 4.34%.

The percentage distribution of mould species isolated from khoa based milk sweets (Table 4) were Aspergillus niger, Aspergillus flavus, Penicillium citrinum, Rhizopus stolonifer, Aspergillus versicolor, Penicillium frequentans, Mucor sp, Aspergillus fumigatus, Aspergillus parasiticus, and Fusarium sp were 38.20, 22.09, 10.46, 9.30, 6.97, 4.65, 3.48, 2.32, 2.32 and 1.16 respectively. These findings were in accordance with findings of Dhand et al. (2001). It was found that the higher incidence of Aspergillus sp 70.90% followed by *Penicillium* sp. 17.38%, Rhizopus sp 10.86%, Mucor sp 4.34% and Fusarium sp 4.34 % in both khoa and khoa based milk sweets. This could be due to the ability of Aspergillus sp, Penicillium sp and Rhizopus sp to grow well in wider range of temperature of 20°C to 50°C, at a relative humidity of 80% to 95% and with water content at

| SI. No. | Mould Isolates          | Total number of Isolates | Local Vendors* | Sources<br>Private Manufacturers* | Organized Dairies* | Percentage | Total Percentage      |
|---------|-------------------------|--------------------------|----------------|-----------------------------------|--------------------|------------|-----------------------|
| 1.      | Aspergillus niger       | 34                       | 22             | 7                                 | 3                  | 38.20      | Aspergillus sp. 70.90 |
| 2.      | Aspergillus flavus      | 18                       | 12             | 4                                 | 2                  | 22.09      |                       |
| 3.      | Aspergillus versicolor  | 5                        | 4              | 1                                 | -                  | 6.97       |                       |
| 4.      | Aspergillus fumigatus   | 2                        | 2              | -                                 | -                  | 2.32       |                       |
| 5.      | Aspergillus parasiticus | 2                        | -              | 1                                 | 1                  | 2.32       |                       |
| 4.      | Penicillium citrinum    | 10                       | 4              | 2                                 | 2                  | 10.46      | Penicillium sp. 15.11 |
| 5.      | Penicillium frequentans | 4                        | 2              | 1                                 | 1                  | 4.65       |                       |
| 6.      | Rhizopus stolonifer     | 8                        | 5              | -                                 | 3                  | 9.30       | Rhizopus sp. 9.30     |
| 7.      | Mucorsp                 | 3                        | -              | 1                                 | 2                  | 3.48       | Mucor sp. 3.48        |
| 8.      | Fusariumsp              | 1                        | -              | 1                                 | -                  | 1.16       | Fusarium sp. 1.16     |
|         | Total                   | 86                       | 52             | 19                                | 15                 |            |                       |

Table 4. Distribution pattern of moulds in khoa based milk sweets from different sources

\*\* Means bearing different superscripts between treatments differ significantly (P < 0.01)

16% to 17% in the sample (Claude and Maurice, 1979). Hence their presence in the indigenous milk products is an indication of the unhygienic conditions prevailing during manufacture and subsequent storage.

In conclusion the present study is recommended to Local vendors should keep in view the public health importance of consumer, the strict hygienic preventive measures should be practiced during pre and post-preparation handling, storage and marketing of the finished products to reduce the microbial load in the finished products, so as to increase quality of the product.

#### References

- Agarwal, R. and Rachappa S. B. 2006. Finished product quality and safety. All India Dairy Business Directory 97-105.
- Bandekar, J., Kamat, A. and Thomas, P.1998. Microbiological quality of the dairy product peda and its improvement using gamma radiation. Journal of Food Safety 18: 221-230.
- Bureau of Indian Standards, 1479. 1977. Indian Standard methods of test for dairy industry. Bahadurshah Zafair Marg, New Delhi.
- Claude, M. and Maurice, M. 1979. Moulds, toxins and food. John Wiley and Sons, New York.
- Dhand, N.K, Joshi, D.V. and Jand, S.K. 2001. Fungal contaminants of milk and milk products and their toxigenicity. Indian Veterinary Journal 72: 956-957.
- Dwarakanath, C.T. and Srikanta, S.1977. Studies on the microbial quality of traditional Indian sweet meat products. Journal of Food Science and Technology 14: 201-204.
- Garg, S.R. and Usha, V.M. 1984. Studies on microbial and chemical profile of some Indian sweet meats and their significance. Indian Journal of Dairy Science 37: 226-333.
- Ghodekar, D.R, Ranganathan. B. and Dudani, A.T. 1980. Yeast and moulds in indigenous milk products. Indian Journal of Dairy Science 33: 255-259.

Grewal, J.S. and Tiwari, R.P.1990. Microbiological quality

of rasamalai. Journal of Food Science and Technology 27:178-179.

- Kamat, A.S., Nerkar, D.P. and Nair, P.M.1989. Bacillus cereus in some Indian foods, incidence and antibiotic, heat and radiation resistance. Journal of Food Safety 10: 31-41.
- Khan, A, Q. 2006. Milk and milk products An entrepreneurial approach. All India Dairy Business Directory 115-117.
- Kulshrestha, S. B. 1990. Prevalence of enteropathogenic sero groups of E.coli in milk products samples from Bareilly and their multiple drug resistance. Indian Journal of Dairy Science 43: 337-338.
- Kumar, V. and Sinha, R.N. 1989. Incidence of coliforms in indigenous milk products. Indian Journal of Dairy Science 42: 579-580.
- Magadam, R.B., Anantakrishnan, C.P. and Natarajan, A.M.1988. Chemical and Bacteriological quality of market samples of kalakand. Cheiron 17: 200-201.
- Sharma, D.K. and Joshi, D.V.1991. Bacteriological quality of milk and milk product with special reference to *Salmonella* and its public health significance. Journal of Food Science and Technology 29: 105-107.
- Soomro, A.H., Arain, M.A., Khaskheli, M. and Bhutto, B. 2002. Isolation of *Escherichia coli* from raw milk and milk products in relation to public health sold under market conditions at Tandojam. Pakistan journal of Nutrition 1: 151-152.
- Smith, G.1981. Smith's introduction to industrial mycology. Edward Arnold Publishers Ltd., London. 398.
- Snedecor, W.G. and W.G.Cochran, (1980). Statistical method. 6<sup>th</sup> edn. The IOWA State University Press. Ames. USA.
- Vijayalakshmi, R. and Tamilarasi, M. 2001. Shelf life and microbiological quality of selected dairy products. Journal of Food Science and Technology 38: 385-386.
- WHO, 1962. Milk hygiene, World Health Organisation, Geneva. pp.313.
- Yadav, J.S., Sunita, G. and Batish, V.K. 1993. A comprehensive Dairy microbiology. Metropolitan press. New Delhi.